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In electrically conductive solids, the Wiedemann-Franz law requires the electronic
contribution to thermal conductivity to be proportional to electrical conductivity.
Violations of the Wiedemann-Franz law are typically an indication of unconventional
quasiparticle dynamics, such as inelastic scattering, or hydrodynamic collective motion
of charge carriers, typically pronounced only at cryogenic temperatures. We report an
order-of-magnitude breakdown of the Wiedemann-Franz law at high temperatures ranging
from 240 to 340 kelvin in metallic vanadium dioxide in the vicinity of its metal-insulator
transition. Different from previously established mechanisms, the unusually low electronic
thermal conductivity is a signature of the absence of quasiparticles in a strongly correlated
electron fluid where heat and charge diffuse independently.

I
n a Fermi liquid, the same quasiparticles that
transport charge also carry heat. Therefore,
in most normal metals the charge and heat
conductivities are related via theWiedemann-
Franz (WF) law: The ratio between the elec-

tronic thermal conductivity (ke) and the product
of electrical conductivity (s) and absolute tem-
perature (T) is a constant called the Lorenz num-
ber, L = ke/sT, typically not very different from
the Sommerfeld value L0 = (p2/3)(kB/e)

2 = 2.44 ×
10−8 W ohm K−2 (where kB is the Boltzmann con-
stant and e is the electron charge). Recently, vio-
lations of the WF law have been theoretically
predicted (1–4) or experimentally observed (5–13)
in some electronic systems. However, with one
exception observed in a one-dimensional con-
ductor at room temperature (13), these violations
typically occur at cryogenic temperatures and arise

from unconventional phases of matter, strong
inelastic scattering of quasiparticles, or semimetal
physics. Here we report a drastic breakdown of
the WF law at high temperatures, with L smaller
than L0 by almost an order of magnitude, in a
strongly correlatedmetal [vanadiumdioxide (VO2)].
The observed anomalously low electronic thermal
conductivity is accompanied by an unusually high
electronic thermoelectric figure of merit; tung-
sten (W) doping causes both properties to partial-
ly revert to normal values. The violation of theWF
law is attributed to the formation of a strongly
correlated, incoherent non-Fermi liquid, in which
charge and heat are independently transported
by distinct diffusivemodes at high temperatures
rather than carried by long-lived quasiparticles
(14, 15).
We observed the effect in the metallic phase

of VO2 in the vicinity of its metal-insulator tran-
sition (MIT). VO2 undergoes the MIT at 340 K,
accompanied by a first-order structural phase
transition from the monoclinic insulating (I)
phase to the tetragonal metallic (M) phase on
heating (16). In this work, ke is determined by
subtracting the phonon (lattice) thermal conduc-
tivity (kph), obtained by combining first-principles
calculations with x-ray scattering measurements,
from the measured total thermal conductivity
(ktot). Previously, ktot of VO2 has been measured
in bulk and thin films with conflicting conclu-
sions. In bulk VO2, for example, it was reported
that ktot stays constant (17) or decreases very
slightly (18) with increasing T across the MIT.
Unknown electronic scattering leading to a pos-
sible failure of the WF law in VO2 was alluded
to nearly half a century ago (17), but this has not

been experimentally or analytically investigated.
Recently, however, time-domain thermal reflec-
tance measurements on polycrystalline VO2 films
showed an increase in ktot, with a magnitude
seemingly consistent with the WF law (19). Un-
like in those measurements, we use single-crystal
VO2 nanobeams, where the single crystallinity
and freestanding configuration in our measure-
ments eliminate extrinsic domain and strain ef-
fects. Moreover, our sample geometry ensures
that both heat and charge flow in the same path
along the nanobeam length direction. This is a
crucial condition that, if not satisfied, could re-
sult in an erroneous determination of ke and
assessment of the WF law, especially for VO2,
which has an anisotropic crystal structure. The
single-crystal VO2 nanobeams were grown by
the previously reported vapor-transport method
(20–22) (see materials and methods, along with
figs. S1 and S2). Figure 1A shows a nanobeam
bonded to two microfabricated, suspended pads
for simultaneous measurements of ktot, s, and
the Seebeck coefficient (23, 24) (details in mate-
rials and methods, as well as figs. S3 and S4).
The thermal and electrical contact resistances
were determined to be negligible (materials and
methods; see also figs. S5 and S6).
The measured ktot of a representative VO2

nanobeam is shown in Fig. 1B. Consistent with a
previous study on bulk VO2 (17), our nanobeams
exhibit very little change in ktot across the MIT:
Dktot ~ 0.2 W/m⋅K. More than five VO2 nano-
beams with different sizes were measured, and
all show Dktot at this level or lower (materials
andmethods and fig. S8). From themeasured s
of the nanobeam across the MIT, the expected
electronic thermal conductivity ðk0e Þ for con-
ventional Fermi liquid transport can be calcu-
lated, assuming that both phases obey the WF
law (L = L0). With s rising from 4.6 × 103 S/m (I
phase) to 8.0 ×105 S/m (M phase) (where 1 S =
1 A/V), k0e exhibits an abrupt jump from nearly
zero to 6.9 W/m⋅K (Fig. 1B). The measured Dktot
is less than 3% of k0e in theM phase. Considering
that k0e alone in the M phase is already greater
than the measured ktot, application of the WF
law would imply an unphysical, negative kph in
the M phase.
To better understand this anomaly, we deter-

mined kph in both I andMphases (kIph and k
M
ph) by

combining first-principles calculations with mea-
surements (details inmaterials andmethods and
fig. S9). As a first step, the phonondispersionswere
calculated using density functional theory (DFT),
as shown in Fig. 2A for both I andM phases. From
these dispersions, both the phonon group velocity
and lattice specific heat were obtained for different
phononmodes andwave vectors. Next, on the basis
of anharmonic (umklapp) phonon scattering in a
pure bulk sample, a full first-principles calculation
(25) was performed for the phonon relaxation
time in the I phase. In this way, a calculated bulk
value of kI;bulkph ¼ 6:46 W=m⋅K was obtained at
T = 340 K along the rutile-phase c axis (the nano-
beam length direction). To evaluate the final
nanobeam phonon thermal conductivity ðkIphÞ,
Matthiessen’s rule was then applied to account for
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impurity and diffuse boundary scattering of pho-
nons. Using the known rectangular cross section,
this boundary scattering (26) reduces kIph from
6.46 W/m⋅K for the bulk to 6.15 W/m⋅K for the
nanobeam, very close to the experimentally mea-
sured value of 5.8W/m⋅K (Fig. 1B). The remaining
small difference is attributed to scattering from
impurities, most probably atomic vacancies as
native point defects (supplementary materials).
For the M phase, evaluating the thermal con-

ductivity solely using first-principles calculations
is challenging because VO2 is a strongly correlated
electron system that could exhibit both strong
electron-electron and electron-phonon interactions
(25). In addition, phonon scattering has not been
successfully calculated with current theoretical
techniques. However, previous ab initio molecular
dynamics simulations within the framework of
DFT were successful in predicting anharmonically
renormalized phonon dispersions in the M phase,
which were in good agreement with energy- and
momentum-resolved inelastic x-ray scattering (IXS)
experiments previously reported in (25). Using
these M-phase first-principles phonon dispersions
(Fig. 2A) benchmarked against experiments, to-
gether with the phonon scattering rates obtained
from the IXS measurements (details in materials
and methods and fig. S9), we determined kM;bulk

ph ¼
5:72 W=m⋅K (Fig. 2B), a reduction by 13% from
kI;bulkph . Note that this value includes umklapp,
electron-phonon scattering, and all other possible
scattering of phonons in bulk, defect-free VO2.
With this value of kM;bulk

ph , using the Matthiessen’s
rule similar to that used in the I phase, the nano-
beam kMph for the M phase was obtained. With
both boundary and impurity scatterings considered,
kIph and kMph for nanobeams become even closer
to each other (Fig. 2B). The electronic thermal
conductivity in the M phase ðkMe Þ can then be ob-
tained by subtracting the nanobeam value of kMe
from the measured kMtot. In this way, we obtained
kMe ¼ 0:72 W=m⋅K and, hence, an effective Lorenz
number Leff ¼ ðkMe =k0e Þ⋅L0 ¼ 0:11L0, correspond-
ing to a suppression of L by nearly an order of
magnitude. Although the uncertainty of kMe is
high compared with kMe itself (~80%), Leff/L0 is
still low, with an upper bound of less than 0.2.
We now show that this effect can be tuned in

W-doped VO2 (WxV1–xO2) nanobeams. Tungsten
was chosen as the dopant because it is known to
lower the MIT temperature (TMIT) by detwisting
the V-V bonds in themonoclinic I phase (16). The
effects of W doping on thermal and electrical
transport over a wide T range are summarized in
Fig. 3, A and B. As can be seen from the electrical
conductivity curves, TMIT decreases monotoni-
cally with the W-doping fraction x at a rate of
~21 K per atomic % (fig. S1), consistent with
previous reports (21, 27). The WxV1–xO2 nano-
beams show a clear jump in ktot across theirMIT,
accompanying the abrupt jump in s, in marked
contrast to the behavior of undoped VO2. To
determine Leff in the M phase of WxV1–xO2, we
obtained kMph in a similar way as for the undoped
VO2 nanobeams by considering both boundary
scattering and the (now substantial) impurity
scattering in the I and M phases of WxV1−xO2.

It canbe seen fromFig. 3C thatLeff increases toward
L0 as a function of x (summarized in table S2).
In the WxV1–xO2 samples, the average W-W

distance is estimated to be ~1 nm, larger than
our estimated quasiparticle mean free path of
electrons in the M phase (~0.5 nm) (materials
and methods section S10). With these levels of

W doping, the added elastic scattering from the
dopants may partially contribute to the rise in
Leff for WxV1–xO2. To elucidate the mechanism
behind the vast suppression in Leff and its par-
tial recovery to the normal value withWdoping,
the Seebeck coefficient (S) of these nanobeams
was alsomeasured. Themeasured S can be used
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Fig. 1. Thermal conductivity of VO2 across the metal-insulator transition. (A) False-color scanning
electron microscopy (SEM) image of a microdevice consisting of two suspended pads bridged by a VO2

nanobeam.Thermal conductivity is measured by transporting heat from the Joule-heated pad (red) to the
sensing pad (blue) through the nanobeam (green). (Inset) SEM image showing the rectangular cross
section of a nanobeam. Scale bars: 10 mm (main panel); 500 nm (inset). (B) Tdependence of measured

total thermal conductivity (ktot) and expected electronic thermal conductivity ðk0e ¼ L0sTÞ of a VO2 nano-
beam. Filled (or open) symbols connected with solid (or dotted) lines are for data collected during heating
(or cooling). ktot has ameasurement uncertainty of < 5%, and T has an uncertainty of <0.7%. (Inset) Four-

probe electrical conductivity (s) versus T for the VO2 nanobeam, used to calculate k0e .Thermal and elec-
trical contact resistances were found to be negligible.
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Fig. 2. Separating phonon thermal conductivity from electronic thermal conductivity. (A) I- and
M-phase phonon dispersions from DFTcalculations.To directly compare the phonon energy for the I and
M phases, we plotted both dispersions together and used the rutile notation, with the zone boundary R
point in the rutile M phase corresponding to the zone center G point in the monoclinic I phase. Z (0,0,0.5),
R (0,0.5,0.5), A (0.5,0.5,0.5),M (0.5,0.5,0), X (0.5,0,0). (B) Nanobeam kph (solid lines) in both I and M phases
was calculated by combining kbulkph (dotted lines) with boundary and impurity scattering effects. The dif-
ference between the measured ktot and the nanobeam kph gives kMe . In the I phase, the DFT framework
was used to calculate kbulkph according to the DFT-predicted phonon lifetimes; in the M phase, a similar
framework was employed to calculate kbulkph using the phonon linewidths measured from IXS (25) on a
bulk sample (open square). In the calculations, the IXS phonon linewidths for the M phase were con-
sidered independent of temperature, on the basis of the results reported in (25).
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to distinguish different scenarios that all lead
to a very small Leff. The dimensionless elec-
tronic figure of merit, S2/L = S2sT/ke, is ~10

−4

for a conventional metal such as copper. Our
measurements (Fig. 3C) instead show that S2/
Leff = 0.11 for the M phase of VO2 (summarized
in table S2). Such a large value of S2/Leff for a
metal is indicative of nonquasiparticle physics,
because the factor kBT/EF (where EF is the Fermi
energy) that usually suppresses S is the same
factor that suppresses interparticle interactions
in a Fermi liquid. This is also supported by con-
sideration of quasiparticle lifetimes (details in
the supplementary materials). The quasipartic-
les, if present, would have a lifetime estimated
to be on the order of ħ/kBT (where ħ is Planck’s
constant h divided by 2p), described as the dif-
fusive “Planckian” limit (28), characteristic of
strongly interacting metals with T-linear resis-
tivity (15). Independently and consistently, the
M-phase VO2 also exhibits a broad Drude peak
with a width >∼kBT in the optical conductivity
(29, 30). Such a short lifetime cannot define mean-
ingfully long-lived quasiparticles (14). Another
closely related indication of the absence of quasi-
particles in VO2 is that its resistivity is above the
Mott-Ioffe-Regel bound; hence, it is a “bad metal”

(31). A high value of S2/Leff approaching unity in
strongly correlated, nonquasiparticle transport
was also revealed in numerical studies using dy-
namical mean field theory (32, 33).
Without long-lived quasiparticles, transport

of charge and heat must proceed through collec-
tive and independent diffusion (14). Hence, the
Lorenz ratio of their conductivities has no rea-
son to take the value L0. Instead, the Lorenz ratio
is proportional to the electronic specific heat
over charge compressibility. For such systems
in the high temperature limit (above the renor-
malized bandwidth), the temperature dependence
of these thermodynamic quantities is relatively
insensitive to interactions. Estimates then show
that, in general, Leff becomes very small, as the
specific heat vanishes more rapidly than the
charge compressibility with temperature (14)
(see supplementary materials). Although Leff nu-
merically recovers toward L0 with W doping, the
linear temperature dependencies of the resistivity
(Fig. 3B) and S (Fig. 3D) in the M phase are qual-
itatively unchanged. The collapse of S with differ-
ent W doping levels onto the same temperature
dependence, as well as the increase of resistivity
with doping in the M phase, indicates that the
material remains a “bad metal” with W doping,

suggesting the continued absence of long-lived
quasiparticles. As TMIT is lowered with doping,
temperatures close to TMIT (where Leff is mea-
sured) are moving away from the asymptotic
high-T regime. Therefore, at lower temperatures,
although charge and heat diffusions remain in-
dependent, one no longer expects Leff << L0; in-
stead, Leff is expected to increase (14). A strong
electron-phonon interaction may potentially couple
kph with ke, resulting in incomplete separability
of kph and ke in the M phase. However, the elec-
tron contribution to the observed ktot would still
remain anomalously low, rendering VO2 a model
system to probe unusual charge behavior in “bad
metals.” As the decoupled, collective transport of
charge and heat occurs universally in incoherent
electron fluids, these effects are expected to exist
generally in a wide variety of strongly correlated
electron materials and can be explored with our
experimental methodology. The Lorenz number
thus provides a window into the unconventional
electronic dynamics of these materials.
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(C) Extracted, normalized Lorenz number as a function of x. Leff is obtained from (Dktot − Dkph)/(s ⋅T),
and the red solid line is a guide for the eye. Also shown is the M-phase S2/Leff with x = 0, 2.1, or 4.5% at
TMIT of 341, 312, and 240 K, respectively. The blue solid line is a guide for the eye. S2/Leff for a con-
ventional metallic conductor, copper, is also shown for comparison (blue dashed line). Error bars mostly
stem from uncertainties of total thermal conductivities and phonon linewidths. (D) Measured Seebeck
coefficient S versus T for the M phase of the VO2 and WxV1–xO2 nanobeams. (Inset) S over a wider tem-
perature range covering both the I and M phases. In all panels, filled (or open) symbols connected with
solid (or dotted) lines represent the data collected during heating (or cooling).

RESEARCH | REPORT

 o
n 

Ja
nu

ar
y 

26
, 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

http://science.sciencemag.org/


Science, Basic Energy Sciences, U.S. DOE, under contract
DE-AC02-05CH11231, and used facilities of the Electronic Materials
Program at LBNL supported by the Office of Science, Basic Energy
Sciences, U.S. DOE, under contract DE-AC02-05CH11231. O.D.
acknowledges funding from the U.S. DOE, Office of Science, Basic
Energy Sciences, Materials Sciences and Engineering Division.
C.K. was partially supported by the Tsinghua-Berkeley Shenzhen
Institute. K.H. and X.Z. were supported by U.S. DOE, Basic Energy
Sciences Energy Frontier Research Center (DoE-LMI-EFRC) under
award DOE DE-AC02-05CH11231. K.H. also acknowledges public
sector funding from A*STAR of Singapore (M4070232.120) and
Pharos Funding from the Science and Engineering Research Council
(grant 152 72 00018). J.H. acknowledges support from the National

Science Foundation of China (grant 11572040) and the Thousand
Young Talents Program of China. Simulation work by J.H. at Oak
Ridge National Laboratory was supported by DOE Basic Energy
Sciences award DE-SC0016166. Theoretical calculations were
performed using resources of the National Supercomputer Center in
Guangzhou and the Oak Ridge Leadership Computing Facility. We
thank R. Chen, D. F. Ogletree, E. Wong, J. Budai, and A. Said for
technical assistance and helpful discussions. J.W. conceived the
project; S.L. and J.S. synthesized the materials; S.L., K.H., K.L., and
K.W. fabricated the devices; S.L. and K.H. performed the thermal and
electrical measurements; C.K. performed Auger electron
spectroscopy; F.Y., S.A.H., K.H., C.D., J.J.U., and X.Z. helped with data
analysis and theoretical understanding; J.H. and O.D. performed the

modeling of thermal conductivity from first-principles phonon
dispersions; and all authors contributed to writing the manuscript.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/355/6323/371/suppl/DC1
Materials and Methods
Figs. S1 to S11
Tables S1 to S3
References (34–74)

3 May 2016; accepted 22 December 2016
10.1126/science.aag0410

Lee et al., Science 355, 371-374 (2017) 27 January 2017 4 of 4

RESEARCH | REPORT

 o
n 

Ja
nu

ar
y 

26
, 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

http://science.sciencemag.org/


 (6323), 371-374. [doi: 10.1126/science.aag0410]355Science 
Junqiao Wu (January 26, 2017) 
Xiang Zhang, Chris Dames, Sean A. Hartnoll, Olivier Delaire and 

Urban,Changhyun Ko, Joonki Suh, Kai Liu, Kevin Wang, Jeffrey J. 
Sangwook Lee, Kedar Hippalgaonkar, Fan Yang, Jiawang Hong,
vanadium dioxide
Anomalously low electronic thermal conductivity in metallic

 
Editor's Summary

 
 
 

, this issue p. 371Science
terms of independent propagation of charge and heat in a strongly correlated system.
smaller than what would be expected from the Wiedemann-Franz law. The results can be explained in 
 nanobeams. In the metallic phase, the electronic contribution to thermal conductivity was much2

VOfound a large violation of this so-called Wiedemann-Franz law near the insulator-metal transition in 
et al.electronic contribution to the thermal conductivity are typically proportional to each other. Lee 

In metals, electrons carry both charge and heat. As a consequence, electrical conductivity and the
Decoupling charge and heat transport

This copy is for your personal, non-commercial use only. 

Article Tools

http://science.sciencemag.org/content/355/6323/371
article tools: 
Visit the online version of this article to access the personalization and

Permissions
http://www.sciencemag.org/about/permissions.dtl
Obtain information about reproducing this article: 

 is a registered trademark of AAAS. ScienceAdvancement of Science; all rights reserved. The title 
Avenue NW, Washington, DC 20005. Copyright 2016 by the American Association for the
in December, by the American Association for the Advancement of Science, 1200 New York 

(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last weekScience 

 o
n 

Ja
nu

ar
y 

26
, 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

http://oascentral.sciencemag.org/RealMedia/ads/click_lx.ads/sciencemag/cgi/reprint/L22/915658256/Top1/AAAS/PDF-Bio-Techne.com-WEBOE-W-009269/RNDsytems.raw/1?x
http://science.sciencemag.org/content/355/6323/371
http://www.sciencemag.org/about/permissions.dtl
http://science.sciencemag.org/


 Submitted Manuscript:  Confidential  

 

Supplementary Materials for 

 

Anomalously low electronic thermal conductivity in metallic vanadium dioxide 

 

Sangwook Lee,† Kedar Hippalgaonkar,† Fan Yang,† Jiawang Hong,† Changhyun Ko, Joonki Suh, 

Kai Liu, Kevin Wang, Jeffrey J. Urban, Xiang Zhang, Chris Dames, Sean A. Hartnoll, Olivier 

Delaire*, Junqiao Wu* 

 

† These authors contributed equally to this work. 

* Corresponding authors. Email: wuj@berkeley.edu (J.W.); olivier.delaire@duke.edu  (O.D.). 

 

 

This file includes: 

 

Materials and Methods 

Figs. S1 - S11 

Tables S1 - S3 

Reference List 

 

mailto:wuj@berkeley.edu
mailto:olivier.delaire@duke.edu


2 

 

Materials and Methods 

S1. Synthesis and characterization of VO2 and WxV1-xO2 nanobeams 

The VO2 and WxV1-xO2 nanobeams were synthesized using a vapor transport scheme 

modified from a previously reported method (20-22, 34).  Powder of V2O5 (and WO2 if needed) 

was ground and well mixed, placed in a quartz boat at the center of a horizontal quartz tube 

furnace, and evaporated at 950oC (Fig. S1A). The ratio of the source powder, [W]/([W]+[V]), 

varied from 0 to 0.1 to control the tungsten doping fraction x in the final product. The evaporated 

V- and W-related species were transported by Ar carrier gas (6.8 sccm, 4 Torr). Downstream, 

free-standing nanobeams grew on an unpolished quartz substrate surface, as shown in Fig. S1B. 

All of the measured nanobeams have rectangular cross section, as confirmed by SEM imaging 

(inset of Fig. 1A). The lengths are typically tens of m, and widths and thicknesses are in the 

range of a few hundred nm to a few m. The phase of the nanobeams was verified by micro-

Raman spectroscopy (Fig. S1C). Below their TMIT, all nanobeams show the I phase with 

monoclinic P21/c structure (also known as the M1 structure) (35), which is the most stable phase 

of VO2 below its TMIT. There are no peaks related to other stoichiometries of vanadium oxides. 

All the Raman peaks disappear above their TMIT (Fig. S1C), indicating the transition to the M 

phase with rutile P42/mnm structure (also known as the R structure). The nanobeam axis is 

parallel to the cR-axis (c-axis of rutile structure), confirmed by selected area electron diffraction 

(SAED), and consistent with previous reports (21, 36). The single-crystallinity of the nanobeams 

is confirmed by the fact that the SAED pattern remains identical when taken at different spots 

along the nanobeam length.  



3 

 

 

Fig. S1. (A) Schematic of growing the VO2 and WxV1-xO2 nanobeams. (B) A SEM image of as-

grown WxV1-xO2 nanobeams. Scale bar: 20 μm. (C) Raman spectra of an un-doped VO2 (x = 0) 

and a W-doped VO2 (x = 0.021) nanobeam recorded at room temperature. Both are identified as 

the I phase. Also shown is the M phase of the VO2 beam measured at 360 K. (D) The MIT 

temperature as a function of AES-determined W doping fraction.  

  

The W fraction (x) of WxV1-xO2 nanobeams was evaluated using nano-Auger electron 

spectroscopy (AES) with a field emission electron source enabling ~ 10 nm probing spot size 

under ultra-high vacuum (< 10-10 mbar). W bulk metal was used as the W reference material, and 

undoped VO2 nanobeams were also measured for comparison. For each nanobeam, the Auger 

spectrum was measured ~ 10 times changing positions for an averaged spectrum. The W 

composition was determined employing the two tungsten MNN Auger peaks located at ~ 1730 
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eV and ~ 1793 eV. The W doping level is uniform along the nanobeam axis, verified by the 

nearly constant nano-AES signal along the nanobeam length. The TMIT reduction rate by W 

doping was determined to be ~21K/at% (Fig. S1D), which is consistent with literature-reported 

values of ~20K/at% for single-crystal, W-doped VO2 (27). 
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S2. Crystal structures of VO2 in the I and M phases and the importance of using single-crystal 

nanobeams 

All the measured nanobeams show the first-order phase transition from I (monoclinic 

M1, P21/c) phase to M (rutile R, P42/mnm) phase. Figure S2 shows the changes in V and O 

atomic positions across the phase transition. The phase transition was confirmed by a 

combination of optical imaging, electrical transport, and Raman spectroscopy. Across the MIT, 

nanobeams all show an abrupt jump in , by over ~ two orders of magnitude (Fig. 3B). Below 

the MIT temperature (TMIT),  increases exponentially with T as expected for a semiconductor. 

In the M phase above the TMIT, all nanobeams exhibit metallic behavior, i.e.,  decreasing slowly 

with T.  

 

  

Fig. S2. Crystal structures of VO2 projected along cR-axis (A), bR-axis (B), and aR-axis (C). 

Monoclinic (I phase) and rutile (M phase) structures are superimposed onto each other to show 

the small lattice distortion across the phase transition. 

 

It is known (37-39) that in large and/or polycrystalline VO2 samples having a high 

density of crystal defects and/or clamping strain, the MIT typically progresses via gradual 

A B C
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evolution of microscopic M/I domain structures (29). As a result, intrinsic properties of the pure 

M and I phases could be obscured in transport measurements due to ensemble averaging over the 

M/I domains. In addition, the large (>1%) and anisotropic spontaneous strain associated with the 

MIT can also cause cracks and fatigue in these samples, which are responsible for degraded 

electronic and thermal properties. VO2 nanobeams, on the other hand, can be made single-

crystalline and free-standing (37-39). Free of extended structural defects and strain, these 

nanobeams undergo an abrupt, single-domain MIT, allowing unambiguous assessment of the 

intrinsic M- and I-phase properties. Most importantly, as stated in the main text, unlike in the 

case of thin film-based measurements, the nanobeam geometry ensures that both heat and charge 

flow in the same path along the nanobeam length direction. This is a crucial condition that, if 

unsatisfied, could result in erroneous determination of e and assessment of the WF law, 

especially for VO2 that has an anisotropic crystal structure.   
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S3. Device structure and measuring tot 

 

 

Fig. S3. Suspended-pad microdevice system. (A) SEM image showing two micro-pads, each 

suspended by six thin arms. Scale bar: 200 μm. (B) Schematic illustration of heat generation, 

transfer and dissipation in the suspended pad system. KS of a nanobeam bridging the two 

suspended pads is measured by sensing Th and Tc. Serpentine Pt electrodes connected to four 

arms are for sensing Th and Tc. The four Pt electrodes crossed by the sample are for simultaneous 

four-probe electrical () and Seebeck (S) measurements.  

 

Suspended-pad microdevices (Fig. S3A) were used for the thermal conductance (KS), 

electrical conductance (G) and Seebeck (S) measurements, similar to previous reports (23, 24, 

40). Pt lines were patterned on SiNx pads each suspended with six flexural SiNx arms. The 

nanobeam is dry transferred to bridge the two suspended pads using a sharp probe tip by aid of a 

micromanipulator, and bonded onto the electrodes with Pt deposition using a focused ion beam 

(FIB) as electrical and thermal contacts. To secure the contacts, the devices were annealed at 

~400 K for 1 h in a vacuum chamber before the measurements.  

Pad1

Arms

Pad2
A

sample

Th=Tg+ΔTh Tc=Tg+ΔTc
P1

P3P2

Tg Substrate Tg
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Heating (Q) &

Read Rh (Th)
Read Rc (Tc)

P3P2

B



8 

 

The straight Pt electrodes contacting the sample are used for the G measurements with 

the four-probe configuration. The serpentine Pt electrodes are used as micro-heater/thermometer, 

by applying DC current (Ih) to heat up and AC current to sense the temperature of each pad. 

Joule heat generated in the hot pad (Pad 1) will flow to the cool pad (Pad 2) through the 

nanobeam bridging the pads. The global temperature (Tg) is controlled by a cryogenic cooler and 

an extra heater that contacts the substrate through a sample holder. All the measurements were 

conducted inside a vacuum chamber (<10-5 Torr).  

KS was measured as follows. Applying Ih on Pad 1 (Fig. S3B) generates the heat Q, 

raising the temperature of the Pad 1 to Th = Tg + ΔTh. Some of Q will dissipate to the substrate 

(P2) through the six arms of the Pad 1, and the rest will transfer to the Pad 2 (P1) through the 

sample, raising the temperature of the Pad 2 to Tc = Tg + ΔTc. Finally, P1 will dissipate to the 

substrate through the arms of Pad 2 (P3). In the steady state, one can write the following 

equations: 

   

 

 

1 2

1 3

1 s h c s h c

2 arm h g arm h

3 arm c g arm c

Q P P

P P

P K T T K T T

P n K T T n K T

P n K T T n K T

 



      

      

      

,    (Eq.S1) 

where Ks and Karm is the thermal conductance (K) of the sample and the arm, respectively, and n 

is the number of arms (i.e., n = 6 in this work). Therefore,  

 2 2

s c h c( ) /K Q T T T    ,     (Eq.S2) 

where Q is obtained by 
2

h Pt arm( )Q I R R   , and ΔTh and ΔTs can be measured by sensing the 

resistance of the serpentine Pt electrode on each pad. ΔTh was controlled not to exceed 3K. 1.11 

kHz (199 Hz) of AC current with a small amplitude < 500 nA was applied to measure the 
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resistance change of the serpentine Pt electrode on the Pad 1 (Pad 2). In order to calibrate the 

temperature of each pad, we used the resistance slope (ΔR/ΔT, where ΔT = 10 K) at each global 

temperature as shown in Fig. S4 (100K in A and 300K in B). All the KS in this study have < 5% 

measurement error. The total thermal conductivity tot is obtained considering the geometric 

factor as tot = KS× l/A, where A is the cross-sectional area, and l is the length of the nanobeam.  

 

 

Fig. S4. R of serpentine Pt electrode vs. T of Pad 1 (Rh) and Pad 2 (Rc) on a microdevice. The 

fitted slopes are used to calibrate the ΔTh and ΔTs at the global temperature of (A), 100 K, and 

(B) 295 K. The coefficient of determination (R2) of the fitted slopes is > 0.99996.  

 

This system was calibrated by measurements of thermal conductivity of SiO2 and crystalline 

silicon nanowires and compared against benchmark data (Fig. S5 below); the values of thermal 

conductivity were found to be similar to those reported in literature, such as Li et al (41) for Si 

and Cahill (42) for SiO2 nanowires with similar diameters. 
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Fig. S5. This system was calibrated by measurements of thermal conductivity of silicon and SiO2 

nanowires and compared against benchmark data, and good agreements were found.  
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S4. Negligible strain effects and electrical and thermal contact resistances  

Unlike ordinary devices used for electrical transport measurements where the samples are 

firmly clamped on a solid substrate, in our case the two pads suspended by the long, flexural 

arms are free to move toward or away from each other, thus the nanobeam is free to shrink or 

elongate and the development of axial strain is avoided (22). This is important, because if it is 

not satisfied, multiple M/I domains will develop along the nanobeam, which would complicate 

the electrical/thermal conduction (36, 38), and the M/I junctions would also contribute to 

additional Seebeck voltages (43).  

The Pt bonds make good Ohmic electrical contacts between the electrodes and the 

nanobeams, as evidenced by the linear I-V curves and the agreement between two- and four-

probe measured electrical resistances of nanobeams (Fig. S6A). The I-V curves are linear in both 

the I and M phases (Fig. S6B).  The measured electrical conductivity (σ) of undoped VO2 is 

within a reasonable range of values reported in the literature for single-crystal VO2, as compared 

below in Table S1. This level of difference in σ can arise from the sample quality (more sample 

quality discussion in Supplementary Materials S6).   

 

References Our work 
Ladd et al. 

(44) 

Burglund et 

al.(17)  

Allen et 

al.(45)  

Nakano et al. 

(46) 

σ (S/m) ~ 8105 ~ 10105 ~ 5105 ~ 5105 2105 

Specimen 

crystallinity 

Single 

crystal 

Single crystal Single 

crystal 

Single 

crystal 

Thin film 

(10-70 nm) 

Table S1. Experimental electrical conductivity of VO2, and comparison to literature values. 

The thermal contact resistance between the nanobeam and the suspended pads in both the 

I and M phases was also found to be negligible, as verified by length-dependent measurements in 
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Fig. S6C. The thermal contact resistance is obtained by extrapolating this dependence to zero as 

in the following: 

Rtot = Rct + Rs = Rct + Ls/sAs,      (Eq.S3)  

where Rtot is the total thermal resistance [K/W], Rct the total thermal resistance of the contacts 

[K/W], Rs the thermal resistance of the sample [K/W], s the thermal conductivity of the sample 

[W/mK], As the sample cross sectional area [m2], Ls the sample length, and Act the contact area 

[m2]. Importantly, because the intercept Rct in Fig. S6C is much smaller than Rs, the thermal 

resistance Rct of all the contacts is negligible, which is consistent with conclusions in literature 

using similar method to make contacts, such as Pt/VO2 contact (47) and Pb/C-bond contact (48).  

To analyze further, the contacts’ contribution Rct (2.2 - 4.3 105 K/W) amounts to only 0.6 ~ 3.9% 

of the nanobeam’s total resistance Rtot (1.1 - 3.7 107 K/W) with the length shown in Fig. S6C. 

With the typical area Act of 5.6  10-13 m2 (contact area for the undoped VO2 sample), we 

evaluate the thermal contact resistance per unit area (R”ct = ActRct) to be R”ct = 1.2 - 2.4  10-7 

m2K/W. This level of R”ct is within an order of magnitude to that of ultra-high quality, 

atomically-intimate contacts realized by sputtering and evaporation (19, 49).  

 

Fig. S6. (A) I-V curves of an undoped VO2 nanobeam (I-phase) measured in the two-probe and 

four-probe configuration, where the electrodes were made with FIB Pt bonding. The nearly 
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identical I-V curves show that the electrical contact resistance is negligible. Inset shows SEM 

image of a Pt-bonded contact between the nanobeam and the underlying pad electrode. Scale bar: 

500 nm. (B) Linear I-V curves of an undoped VO2 nanobeam in the I and M phases. (C) Plot of 

total thermal resistance (1/K) multiplied by cross-sectional area (As) of the nanobeams (each 

beam has a different As) as a function of the nanobeam length (l). Here the nanobeams are 

undoped VO2. The linear relationship and the fact that they extrapolate to zero indicate 

negligible thermal contact resistance.  
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S5. Determination of nanobeams sizes 

 

 

Fig. S7. SEM images of a typical nanobeam on the device, taken in the top view (A-B), and at a 

tilted angle (C). Scale bar: (A) 2 μm; (B) 500 nm; (C) 500 nm. 

To accurately determine  and  of the nanobeams, it is important to carefully measure 

the nanobeam dimensions. The length (l) and width (w) of the nanobeams were measured using a 

SEM. To measure the thickness (t), the image was taken at a tilted angle by rotating along the 

axis of the nanobeam, as shown in Fig. S7. All the dimensions were measured using a SEM with 

the resolution of ~5 nm/pixel. As the thinnest nanobeams have t > 200 nm, a maximum error of 

4.3% could occur in the geometric factor (A/l = t×w/l). However, even in this case, the size error 

does not affect the evaluation of Δe/tot. The error from the size measurements does not 

translate to the effective Lorenz number Leff, because the geometric factor is cancelled out in 

calculating Leff.    

w
t sinθ

Rotated, θ

A

B C

w cosθ

l
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S6. Effects of vacancies and twin boundaries, and more devices measured  

The MIT temperature is dependent on the stoichiometry of VO2: a small change in the 

oxygen concentration results in a shift in TMIT (50). Since all of our VO2 nanobeams have a MIT 

at the un-shifted 340K, we expect the non-stoichiometry deviation from VO2.0 to be less than 1%. 

In addition, oxygen vacancies affect the electrical conductivity in the I phase (51), but its 

contribution to electronic thermal conductivity is negligible, as the electrical conductivity is 

always very low in the I phase compared to the M phase. Twinning in the I phase may occur 

during growth or due to clamping strain in thin films or nanobeams supported on a substrate (52, 

53). Our nanobeams are suspended with the flexural platforms and hence strain-free (22). 

Nonetheless, it is possible that a small number (< 10) of twin walls form during the growth 

distributed at random positions along the nanobeam length in the I phase (52). However, the 

distance between the twin walls is expected to be much larger than the effective diameter of the 

nanobeams, and hence their effects on thermal conductivity of the I phase are minimal. Moreover, 

when undergoing the MIT into the M phase for which the Lorenz number is analyzed in this 

work, these twins disappear, because they are forbidden by the tetragonal crystal symmetry (52).  

Indeed, these effects on thermal conductivity are negligible, as seen from reproducibility 

of the measured results: multiple nanobeams synthesized in different growth batches demonstrate 

reproducibly very similar value and behavior of tot , despite their possible different twin 

structures. As shown in Fig. S8, we have measured more VO2 nanobeam devices, and all devices 

show consistently anomalously small change in tot across the MIT.  
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Fig. S8. Measured tot of four undoped VO2 nanobeams, all showing very similar behavior as the 

one in Fig.1B: nearly no change or changes across the MIT much lower than 0

e  expected from 

the WF law using L0.  
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S7. Bulk phonon thermal conductivity  

To analyze the anomalously small change tot across the MIT in undoped VO2, the 

naïve assumption that the phonon contribution to tot in the I and M phases are equal (
I M

ph ph  ) 

can be first considered. The measured tot can then originate only from the change in e, that is, 

M

tot e e      , since I

e   in the I phase is negligible. We define the effective Lorenz number 

in the M phase, Leff, following the formulation of the WF law, 
M

e effL T  , such that 

M 0

eff 0 e eL L   . This analysis is similar to that by Núñez-Regueiro et al on TaS2 across its 

charge-density-wave transition (54), and by Crossno et al in hydrodynamic electron behavior in 

graphene (12). Under this assumption, Leff/L0 of VO2 would clearly be extraordinarily low: about 

0.04.  

For WxV1-xO2 nanobeams, although tot is much higher than in the undoped VO2 

samples, the analysis based on the WF law using L0 would still lead to a similarly unrealistic 

conclusion. For example, for the W0.021V0.979O2 nanobeam, 
0

e  is estimated to be 5.3 W/mK in 

the M phase based on the measured , which is nearly equal to 
M

tot 5.4   W/mK; hence a direct 

application of the WF law using L0 would require unrealistically that 
M M M

ph tot e 0     .  

Therefore, for both the undoped and W-doped VO2, the actual value of ph and the 

change in ph across the transition both must be considered carefully.  

In general, ph is determined by the product of the mode-dependent lattice specific heat 

(Cq,j), phonon group velocity (vq,j), and the mean free path (q,j = vq,j·q,j, where q,j is the phonon 

scattering time, q the phonon mode wavevector, and j the phonon branch index), which are 

dominated by the harmonic (C, v) and anharmonic () parts of the interatomic potentials. The 
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monoclinic structure (P21/c) of the I phase differs from the tetragonal structure (P42/mnm) of the 

M phase only by a small lattice distortion, as shown in section S2. The total lattice specific heat 

(C = q,jCq,j) is related to the total number of phonon modes and is not very different between the 

I and M phases, as confirmed by measurements (17). The sound velocity v ~ (Y/)1/2 is expected 

to be slightly different, as both the Young’s modulus (Y) (55) and density () of VO2 show small 

variation between these two phases. Indeed, the measured Rayleigh sound velocity of surface 

acoustic waves in VO2 along the cR-axis was reported to change by ~ 10% between the I and M 

phases (56). Furthermore, inelastic neutron scattering measurements (INS) showed that the 

phonons are softer in the metallic phase than in the insulating state (25). The softening of phonon 

group velocities across the MIT is more directly revealed in the first-principles simulations of 

phonon dispersions for both phases (Fig. 2A). Lastly,  is expected to change across the MIT, 

predominantly due to higher phonon anharmonicity in the M phase (25). For example, the 

thermal expansion coefficient, which reflects the anharmonicity, is higher in the M phase than 

the I phase by a factor of two (57). Therefore, it is anticipated that 
M I

ph ph   in the bulk, and 

hence ph must be considered carefully, to understand the unusually small change in the 

measured tot. 

A. DFT calculations of dispersions for both I and M phases of VO2: 

The ph of the undoped VO2 was calculated based on the first-principles calculations 

performed in the framework of DFT as implemented in the Vienna ab initio Simulation Package 

(VASP)(58, 59) with a plane-wave cut-off of 500 eV. An 8× 8×8 Γ-centered q-point mesh is 

used for the M and I phases. The projector augmented-wave potentials explicitly include 13 

valence electrons for V (3s23p64s2 3d3) and 6 for oxygen (2s22p4). The PBE exchange-correlation 

functionals (60) were used in the calculations. The supercell was chosen as 2×2×5 for the M 
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phase (5 unit cells along c) and 2×2×2 for the I phase. The harmonic phonon dispersion 

calculations were performed with VASP and Phonopy (61).   

The monoclinic I phase was found to be harmonic and phonon dispersions were 

computed as described above. We note that harmonic DFT dispersions reported here for the 

monoclinic I phase are in excellent agreement with the phonon dispersions measured on bulk 

single crystals with inelastic x-ray scattering (IXS). The rutile M phase was found to be highly 

anharmonic in our DFT calculations, also consistent with the recently reported IXS 

measurements in Ref. (25). For the rutile M phase of VO2, DFT calculations limited to the 

harmonic approximation yield unstable phonon branches over much of the Brillouin zone, 

independent of the exchange-correlation functional and other parameters of the simulation. IXS 

measurements revealed very broad acoustic modes, confirming the strong anharmonicity. In 

order to capture the anharmonic renormalization of phonons in the rutile M phase, first-principles 

calculations at finite temperature (425K) were performed with ab initio molecular dynamics 

(AIMD) in the canonical ensemble (NVT), and the temperature-dependent effective potential 

(TDEP) method (62) for a 2×2×5 supercell of rutile (M-phase) unit cell. This procedure yielded 

renormalized dispersions in good agreement with IXS data reported in Ref.(25).  

B. Phonon thermal conductivity calculations for the bulk I and M phases:  

The intrinsic (bulk) thermal conductivity of the respective VO2 phase was obtained by 

integration over the Brillouin zone for the different branches:  

1
,C v v

V
    



           (Eq.S4) 

where 𝜆 = (𝒒, 𝑗) labels each phonon mode (wave vector, branch index). The mode contribution 

to the volumetric heat capacity is 
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
      (Eq.S5) 

And the mode-dependent group velocity is evaluated from the derivative of the dynamical 

matrix, 

v
q










.         (Eq.S6) 

The Bose distribution was computed for the respective temperature T, 

0

/

1

1Bk T
n

e 
 



.        (Eq.S7) 

For the monoclinic I phase, we calculated the phonon thermal conductivity fully from first-

principles, using the Boltzmann transport equation (BTE) formalism implemented in the 

software ShengBTE (63).  

  The calculated thermal conductivity for bulk, monoclinic I phase of VO2 at T = 340K is 

I,bulk

ph 6.46   W/m·K. 

  For the rutile M phase, we used the dispersions and group velocities obtained from DFT 

(via TDEP) shown in Fig.2A at 425 K. The phonon lifetimes   in the rutile phase were based on 

the experimentally measured data reported in Ref.(25), which shows no temperature dependence 

up to 425K as long as VO2 is in the M phase. In order to carry out the integration for 𝜅𝛼𝛽 in Eq. 

S4 over the Brillouin zone, we obtained an empirical relationship between the set of reported   

and the phonon energies. A simple correlation was obtained for the phonon scattering rates, 

1/q,j, versus phonon energy. For the phonon modes measured over the dispersive portion of the 

acoustic branches (TA modes: E < 12meV, LA modes E <30meV), we found a linear correlation 

(i.e., h/q,j  ·Eq,j, where  = 0.210.02 and h is the Planck constant), as shown in Fig. S9. As 
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was noted in Ref.(25), the TA phonon modes are especially broad for the flat portions of the 

dispersions, e.g., around the R and M symmetry points of the rutile Brillouin zone. However, 

since these modes have very low group velocities, they do not contribute significantly to the 

thermal conductivity, and details of the scattering rates are less important. In consequence, we 

simplify the correlations between 1/q,j and E to be the same for all modes.  

The thermal conductivity integration was performed by summing Eq.S4 over the 

symmetry-irreducible wedge of a 202020 reciprocal space q-grid, including all the branches. 

The group velocities were evaluated numerically from the dispersions surfaces calculated on the 

q-grid. The convergence with grid density was checked.  

The result for the bulk rutile M phase of VO2 at T = 425K is 𝜅ph
M,bulk

 = 5.72 W/m·K. 

 

Fig. S9. Full-Width-Half-Maximum (FWHM) for dispersive (filled squares) and non-dispersive 

(crosses) phonon modes in the M phase at 425K, extracted from the Inelastic X-Ray Scattering 

(IXS) measurements on bulk VO2 reported in Ref. (25), which is subsequently used to extract the 
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phonon thermal conductivity of the M phase using h/q,j = FWHM. Data at 342K shows the same 

dependence.  

We also calculated mode-resolved phonon MFPs in each phase as shown in Fig. S10. The 

MFPs for the metallic phase were obtained from the first-principles group velocities and IXS 

measurements of phonon linewidths (see also Fig. S9), while the MFPs for the insulating phase 

were obtained from group velocities and linewidths both computed from first-principles. 

Focusing on modes below 25 meV, which are the dominant heat carriers around room 

temperature, the average phonon MFP is 5.18 nm for the metallic phase and 5.86 nm for the 

insulating phase, respectively, which are very similar to each other. Figure S10 shows that some 

of the low-energy phonons (below 10 meV) have much larger MFPs in the insulating phase than 

the metallic phase, but the insulating phase also exhibits numerous phonon modes with very 

small MFPs, which is a result of its many optical branches with very low group velocities (as 

seen in Fig. 2A). As a result, the average phonon MFPs are fairly similar for both phases. 

Therefore, the lattice thermal conductivities of both phases are similar across the MIT. 
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Fig. S10. Mode dependent phonon mean free paths (MFPs) of VO2 in the insulating phase at 340 

K and metallic phase at 425 K. 
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S8. Nanobeam phonon thermal conductivity  

We obtain the nanobeam thermal conductivity by using Matthiessen’s rule to combine 

different scattering mechanisms in the nanobeams. We start from I phase bulk thermal 

conductivity 
I,bulk

ph  (= 6.46 W/mK from DFT in Section S7) of undoped VO2 at the phase 

transition temperature of 340K, where the dominant scattering mechanism is umklapp scattering. 

With this 
I,bulk

ph , adding boundary scattering using Eq.14 in Ref. (26) (as the effective beam size 

shown in Table S2) and impurity scattering using the Klemens’ expression (64) of 

1 4

impurity,I Iτ A ω  , the nanobeam phonon thermal conductivity can be obtained. Fitting to our 

measured I-phase nanobeam thermal conductivities (Fig. 3A of the main text) in the temperature 

regime near the MIT, the only unknown parameter AI can be obtained. For the samples with 

2.1%, 2.6%, and 4.5% W-doping, the AI values are 2.81042 s3, 7.81042 s3 and 1.51041 s3, 

respectively. We note that effects of any local strain (bond deformation) due to the W doping are 

also effectively included together with the impurity scattering in this model. The undoped VO2 

may also have impurity scattering due to native defects. The corresponding AI value from fitting 

is 2.31043 s3, orders of magnitude smaller than the WxV1-xO2. In the undoped VO2 nanobeams, 

the thermal resistance contributed by the impurity scattering is one order of magnitude lower 

than the resistance limited by umklapp scattering. Thus, the uncertainty in AI would not affect 

the main conclusions of unusually low electronic thermal conductivity (
M

e ) and low effective 

Lorenz number (Leff << L0) in the undoped nanobeams. 

For the impurity scattering in the M phase, while the species and density of impurities 

remain unchanged across the MIT for any given sample, the scattering cross-section is scaled by 

the phonon group velocity, and we accounted for this effect by using the respective dispersions 
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of I and M phases along the cR axis. Based on the impurity scattering time in I phase, we 

obtained the impurity scattering time in M phase of all the acoustic branches using Klemens’ 

expression (64) of 
1 4

impurity,M Mτ A ω  , where  
3

M M I IA / Av v , and vI and vM are the group 

velocities of the I and M phase for their corresponding branches along the cR axis. These group 

velocities were extracted from the calculated dispersion in Fig. 2A. The boundary terms are the 

same in the M and the I phases. All the other scattering mechanisms in the M phase were 

included in the experimental linewidths determined from the IXS measurements of the bulk 

single crystal (25). With these individual components ascertained, the phonon thermal 

conductivity of the M phase of VO2 and WxV1-xO2 nanobeams was obtained. Subtracting this 

phonon contribution 
M

ph  from the measured 
M

tot , 
M

e  was obtained, as seen in Table S2. For 

the undoped VO2, the obtained
M

e (0.72 W/m-K) is small compared to the measured 
M

tot  (5.87 

W/mK).  Although the uncertainty for 
M

e is large compared to 
M

e  itself (~80% for VO2), this 

does not affect the fact that Leff/L0 is still small: the upper bound of Leff/L0 for VO2 is less than 

0.2 even when considering such uncertainty, as shown by the error bars in Fig. 3C.  

 

W doping 

fraction, x 

(%) 

MIT 

temperature 

(K) 

Effective 

beam 

size (nm) 

I

tot  

(W/mK) 

M

tot  

(W/mK) 

M

ph  

(W/mK) 

M

e  

(W/mK) 

Leff/L0 at T 

slightly above 

TMIT 

0 341 432 5.80 5.87 5.15 0.72 0.11 

2.1 312 325 3.4 5.32 3.98 1.34 0.26 

2.6 286 512 2.63 4.46 2.83 1.63 0.37 

4.5 240 508 1.99 3.96 2.19 1.77 0.59 
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Table S2. W-doping dependent metal-insulator phase transition temperature TMIT, effective beam 

size, and normalized Lorenz number at temperatures slightly above TMIT. Thermal conductivity 

of the phonon contribution, electron contribution, and the total are also shown for both the M and 

I phases. 
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S9. Seebeck coefficients of VO2 and WxV1-xO2 nanobeams 

Seebeck coefficients (S) were measured using the suspended-pad microdevices. When we 

measured the electric potential (Vtotal) produced by a temperature difference T = Th - Tc, the 

measured S (Smeasured) includes the potential drop across the two platinum arms that support the 

hot pad (VPt,h) and cool pad (VPt,c), as follows:  

T

V

TT

V
S total

ch

total
measured





        (Eq.S8) 

cPtNBhPttotal VVVV ,,         (Eq.S9) 

where VNB is the potential produced across the nanobeam sample. VPt,h and VPt,s are generated by 

the temperature difference between the hot pad and substrate [  hPthPt TTSV  0, ], and the 

cool pad and substrate [  0, TTSV cPtcPt  ], respectively, hence one obtains the following:  

 
NBPt

NBhcPttotal
measured SS

T

VTTS

T

V
S 







    (Eq.S10) 

The SNB shown in Fig. 3D was obtained using the Smeasured and previously reported SPt (65). It is 

intriguing to note that the Seebeck coefficients of the metallic phase of VO2 measured from 

different samples and reported by different groups (17, 43, 66) are all very close to each other, 

between 20-30 V/K, despite that the S values for the insulating phase are vastly different. 

 The measured Seebeck coefficient for these different samples collapses into the same 

temperature dependence, as shown in Fig. 3D. This is consistent with the continued absence of 

quasiparticles even after the W doping. For VO2, its Seebeck coefficient is one order of 

magnitude higher than most good metals, which are defined as metals where the electron mean 

free path (le) is well defined and is much larger than the Mott-Ioffe-Regel limit, le  > a, where a is 

the lattice spacing (67). Further, even at lower temperatures, the slope of S versus T is 
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significantly larger (~ 6 V K-1/100K) than those for good metals (~ 0.5 VK-1/100K) (68), as 

shown in Fig. S11. Therefore, in the absence of quasiparticles, not only Leff is significantly 

suppressed from ~ 0.6L0 at 240K (4.5% W-doped VO2) to ~ 0.1L0 at 341K (W-free, undoped 

VO2), but also S is enhanced from -12 V/K to -18 V/K. 

While it is difficult to perform quantitative computation of Seebeck coefficient without 

quasiparticles, some general expectations may be gleaned from numerical dynamic mean field 

theory (DMFT) studies. The large values we have measured for S are in the same ballpark as 

those obtained via DMFT in regimes where there is a linear in T dependence of S with a negative 

slope, such as Fig. 1 in Ref. (33), Figs. 4 and 6 in Ref.(32), and Fig. 4 in Ref. (69). The behavior 

in all these plots is characterized by an effectively reduced EF in the Mott relation, as we have 

found in VO2, with |S| ~ 0.1-0.4 kB/e (equivalent to ~ 8.6 - 34 V/K), significantly larger than in 

conventional metals. This large Seebeck and small Leff in Supplementary Materials S8 both 

contribute to significantly higher S2/Leff as compared to good metals, as shown in Fig. 3C. 

  

Fig. S11. Comparison of the temperature dependent Seebeck coefficient of VO2 (absent  

of quasi-particles) with normal, good metals (present of quasi-particles), such as Cu, Ag, and Au.
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S10. Evidences of absence of quasiparticles, and decoupled charge-heat transport in VO2 and 

WxV1-xO2 

If the material were a conventional, three-dimensional Drude metal, from the linear 

dependence of S on temperature (Fig. 3D), we could extract the Fermi level, EF, from the Mott 

relation (which assumes the existence of quasiparticles) given by
2 2

2 F

T
Be E

S k . We obtain then EF 

= 0.55eV, which agrees well with similar estimates in literature (70). This value is also in 

excellent agreement with that obtained from optical conductivity data (30) and is furthermore 

about half the value expected from band structure computation, as is typical for strongly 

correlated materials (67). This supports our expectation that no quasiparticles are present in VO2 

in the M phase. Assuming a three dimensional solid,  
2

2
2 3

2 *
3F m

E n   for a carrier 

concentration of n ~ 11023 cm-3 from high quality VO2 bulk crystals (70), we obtain an effective 

mass of m* = 14.3m0 (where m0 is the free electron mass). Then, using  21
2

*F FE m v , we obtain a 

Fermi velocity
2

Fv ~ 1.16105 m/s.  The Fermi momentum is given by, 

      
22 2 2 3* 3F F Fp m v k n  which gives a Fermi wavevector, kF =1.44108 cm-1, 

agreeing well with kF ~ 1108 cm-1 from Qazilbash et al (30). Then, using the Drude formula 

from our measured values of electrical conductivity ( = ne2DC/m*= 8.1105 S/m), we obtain 

the putative quasiparticle lifetime,  1
5

~
BDC k T

. This is a lifetime close to the “Planckian” limit 

 
Bp k T

(28), characteristic of strongly interacting metals with T-linear resistivity (15). Such a 

short lifetime cannot define long-lived quasiparticles. An independent signature of the short 

lifetime in metallic VO2 comes from the fact that the M state does not exhibit a sharp Drude peak 

in the optical conductivity; instead, the peak is broad with a width of >  kBT (29, 30). Further, 
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from the optical data, the lifetime can be directly read off from the Drude-like peak at zero 

frequency. In particular, from Fig. 2B in M. Qazilbash et al. (30) for the optical response in the 

metallic phase VO2, one obtains 
 

1

0
3500

 
 cm-1, or 1

15
~

Bk T
  (29). The computation of the 

lifetime from DC transport, in the spirit of Bruin et al. (15), is at best an estimate given that the 

Drude formula assumes the existence of quasiparticles, but its consistence with the optical 

timescale is striking. Similarly, note that the Mott relation is also no longer valid in the absence 

of quasiparticles. Therefore, if we naively use quasiparticle equations such as the Mott relation 

for Seebeck and the Drude model for electrical conductivity, then the charge carriers would be 

dissipating at timescales shorter than of of the same order of the Planckian limit (15, 28, 71), 

which is characteristic of correlated carriers. The similar values of scattering rate from two 

different experiments point to the reconciliation between the optical conductivity approach and 

the separate heat and charge diffusion in our system. The DC transport quantities, however, are 

not directly given in terms of this effective quasiparticle lifetime alone. The distinction between 

thermal and charge transport that is revealed by the Lorenz ratio (Leff/L0) offers a unique window 

into the non-quasiparticle dynamics, as it directly probes the decoupling of heat and charge 

transport that would be otherwise bound together when carried by quasiparticles. Our 

experiments are novel in showing that a macroscopic property such as steady state diffusion of 

heat/charge under a temperature gradient is governed by non-quasiparticle physics. Similar 

calculations for W-doped VO2 show further decreased qp with increasing W fraction at lower 

TMIT.  

In the incoherent transport regime (14), charge and heat diffuse separately and 

independently, characterized by diffusivities Dc and Dh, respectively. The respective 

conductivities are then given by the standard Einstein relations  =·Dc and κe = C·Dh. Here  is 
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the charge compressibility and C the specific heat. In the absence of quasiparticles, there is no 

relation between the four quantities , Dc, C and Dh, and hence the Lorenz ratio of conductivities 

has no reason to take the value L0. This is a robust, model-independent conclusion.  

It should be recalled that while charge screening by Coulomb interactions means that 

charge does not literally diffuse in a metal, it is the unscreened charge dynamics that determines 

the observable conductivities. Hence the Einstein relations and other results based on unscreened 

diffusion still apply.   

In the high temperature limit (above the bandwidth EB, kBT > ~ EB), one expects in 

general that C ~ 1/T2 and  ~ 1/T with Dc and Dh constant in temperature (14). It follows that at 

high temperatures L becomes small. This general expectation is also realized by high-

temperature computations using DMFT (33). While the data in VO2 is not at such extremely high 

temperatures (above the bandwidth), this result indicates the tendency for Leff to be small in 

incoherent electron fluids at high temperatures. Indeed, DMFT computations reveal that the 

limiting high temperature behavior typically onsets at temperatures well below the bare, un-

renormalized, bandwidth (32, 33). While the precise temperature above which the limiting high 

temperature behavior will set in is difficult to predict for a given material, a qualitative prediction 

of the incoherent electron fluid picture is that Leff should be small at high temperatures, as we 

have observed in VO2.  

As TMIT is lowered with W doping, temperatures close to TMIT where Leff is measured are 

moving away from the asymptotic high-T regime. At lower temperatures, although charge and 

heat diffusions remain independent, one no longer expects Leff << L0. Instead, Leff is expected to 

increase. For WxV1-xO2, the absence of quasiparticles continues. In contrast to the increase in e 

in WxV1-xO2 (Fig.3A),  in the M phase decreases with x near TMIT (Fig. 3B). Thus, conventional 
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metallic properties for good metals, such as good charge conduction, are not recovered with the 

W-doping. Therefore, there is no a priori compelling reason for the WF law to be restored in 

WxV1-xO2, in spite of the apparent, numerical recovery of Leff toward L0 (Fig. 3C). 

Modest deviations of Leff from L0, as much as ~ 0.4 < Leff/L0 < ~ 3.6, have been reported 

in several metals and degenerately doped semiconductors (72). These deviations occur when the 

mean free path of electrical transport becomes unequal to that of electronic thermal transport. 

This may arise from inelastic scattering events such as collisions between electrons and optical 

phonons, which are in contrast to elastic scattering of electrons by impurities or boundaries. In 

the WxV1-xO2 samples, however, as stated in the main text, the average W-W distance is 

estimated to be ~ 1 nm. This estimation was made with volumetric spacing for the W-doped 

samples. For 2.1%, 2.6%, and 4.5% W-doping, it is estimated to be 1.1 nm, 1.1 nm, and 0.9 nm, 

respectively. If using the Drude model to estimate the mean free path of electrons, given by le = 

vF· ~ 0.5 nm, all these W-W distances are longer than this estimated mean free path.  Our value 

of the mean free path is in close agreement with literature value (~ 0.3 nm), and the difference is 

caused by the variation of the Fermi wavevector (kF ~ 1108 cm-1 in  Qazilbash et al (30))  as 

compared to 1.44108 cm-1 in our estimation above. Such a relatively large value of W-W 

spacing and the small change in it are unlikely to bring elastic scattering to a dominant role in the 

electronic transport. However, this does not completely rule out a possible contribution of elastic 

scattering by W doping to the rise in Lorenz number. Based on the discussion above and the 

persistence of the incoherent, non-quasiparticle transport, therefore, we can only conclude that 

the rise observed in Leff upon W doping likely originates from both: (a) the incoherent, non-

quasiparticle transport electrodynamics, in which the ratio of the temperature dependence of the 

charge susceptibility and the electronic specific heat determines Leff, as well as (b) increased 
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elastic scattering by the W dopants. It is worth emphasizing again that even with the highest W-

doping of 4.5%, charge and heat still diffuse independently with the absence of quasiparticles, 

evidenced by the collapse of the Seebeck for different W-doping levels (Fig. 3D) and the 

increasingly high resistivity.   

The measured value of S2/Leff also rules out an alternative mechanism giving a similarly 

small Leff. If a metal enters a specific type of quasi-hydrodynamic regime dominated by 

momentum relaxation, then a small Leff follows from a kinematic cancellation arising due to the 

electric open-circuit boundary condition under which tot is measured (4). However, this 

cancellation requires S2/Leff >> 1, in contradiction with the measurements (Table S3). This 

regime furthermore predicts a sharp Drude peak, in contrast with the broad peak observed in VO2 

(29, 30).  

The recent experimental demonstration of violation of the WF law in semi-metallic 

graphene (12) indeed occurs in such a quasi-hydrodynamic, coherent charge transport regime, in 

which momentum is long-lived. However, due to the low density of charge carriers close to the 

particle-hole symmetric point, in that system, momentum transports heat more efficiently than 

charge. One therefore instead expects a large Leff >> L0 in semi-metal hydrodynamics, as 

observed in Ref. (12). Incoherent transport in metallic VO2 is markedly different, since 

momentum deteriorates rapidly, see previous paragraphs and Ref.(14). This distinct, incoherent 

dynamics leads to the Leff << L0 at high temperatures that we have observed.  

 

material S (V/K) Leff/L0 S2/Leff 

VO2 -18 1.1101 1.2101 

W0.021V0.979O2 -15 2.6101 3.6102 
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W0.045V0.955O2 -11 5.9101 8.4103 

Cu 1.8  1.0  1.3104 

Table S3. Seebeck coefficient S, effective Lorenz number Leff, and electronic figure of merit 

S2/Leff of metallic WxV1-xO2 nanobeams near their TMIT. The parameters for Cu (73) are at room 

temperature. For most conventional metals (74), their S2/Leff ranges from values as small as that 

of Cu (~ 104) to up to ~ 103. 
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