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Two-dimensional semiconductors survive and thrive in outer space

Jungiao Wu

Outer space is the vast expanse that exists
beyond Earth’s atmosphere, stretching
between celestial bodies. It contains
extremely low particle densities, forming
a near-perfect vacuum composed pri-
marily of hydrogen and helium plasma.
This space is permeated by electromag-
netic radiation, cosmic rays, neutrinos,
magnetic fields and interstellar dust. The
surface of space objects, if not thermally
managed, would also experience a wide
temperature swing. Survival of electron-
ics in such harsh environments in outer
space is critical for space exploration.
Continuous exposure to ionizing radia-
tion, such as from the Van Allen belts, can
cause gradual degradation of Si-based
electronic components, leading to in-
creased leakage currents, threshold shifts
and reduced functionality. To enhance
their endurance, various techniques like
radiation-hardened designs, shielding
and the use of alternative radiation-hard
materials like silicon carbide (SiC) are
employed [1].

Understanding the physical behavior
of electronic materials, such as semi-
[2], thermoelectrics [3]
and ferroelectrics [4], under radiation
exposure typical of outer space has been
an active and important research field.

conductors

For example, the electrical conductivity
of a semiconductor may either increase
(as in InN or CdO) or decrease (as in
Si or GaAs) depending on the unique
physics of point defect generation,
ionization and charge trapping in the
material [5].

2D  semiconductors, particularly
transition metal dichalcogenides, have
emerged as promising materials with
regard to continuing the miniaturization
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Figure 1. (a) Schematic diagram and (b) photograph of a field-effect-transistor (FET) device made of
Nb-doped WSe; after the space test. (c and d) Optical microscope images of the FET device before
and after the space test. (e) Photoluminescence of a Nb-doped WSe, monolayer, and (f) source-drain
current as a function of gate voltage of the transistor before and after the space test. Adapted with

permission from Ref. [6].

of microelectronic devices. Naturally,
an important question arises: how ro-
bust are monolayer 2D semiconductors
when subjected to the harsh conditions
of outer space? A recent work [6] by
Dr. Ruitao Lv and colleagues offers a
preliminary answer: these materials
are electronically quite stable in space
conditions, with superior resistance in
their optical properties against radiation
damage.

Using the recoverable satellite Shijian-
19, the team tested the optical properties
and field-effect-transistor (FET) perfor-
mance of WSe, and Nb-doped WSe,
after a 14-day orbit in which they experi-
enced radiation in outer space. For com-
parison, they also measured leakage cur-
rents in a SiO; dielectric layer (~300 nm
thick). Despite an expected two-order-
of-magnitude increase in leakage current
in SiO,, Raman and photoluminescence

measurements of the 2D semiconduc-
tors showed negligible degradation
(Fig. 1). Furthermore, FETs made from
these 2D materials maintained a high
ON/OFF ratio (~10°) after the flight,
though some gate threshold voltage shifts
were observed, likely due to accumu-
lated interface charge traps or surface
contamination.

This pioneering work highlights 2D
semiconductors as a promising mate-
rial platform for light emitters, tran-
sistors, solar cells and sensors suited
for space exploration and other extreme
environments. It would be exciting to
see following-up work that quantifies the
radiation hardness of 2D materials bench-
marked against other conventional semi-
conductors such as Si in space environ-
ment.
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